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ABSTRACT
This paper presents a novel methodology for detecting col-

lisions of cylindrically shaped rigid bodies moving in three di-
mensions. This algorithm uses line geometry and dual number
algebra to exploit the geometry of cylindrical objects to facilitate
the detection of collisions. First, the rigid bodies are modelled
with infinite cylinders and a necessary condition for collision is
evaluated. If the necessary condition is not satisfied then the two
bodies do not collide. If the necessary condition is satisfied then
a collision between the bodies may occur and we proceed to the
next stage of the algorithm. In the second stage the bodies are
modelled with finite cylinders and a definitive necessary and suf-
ficient collision detection algorithm is employed. The result is
a straight-forward and efficient means of detecting collisions of
cylindrically shaped bodies moving in three dimensions. This
methodology has applications in spatial mechanism design, robot
motion planning, and workspace analyses of parallel kinematic
machines such as Stewart-Gough platforms. A case study exam-
ining a spatial 4C mechanism for self collisions is included.

1 INTRODUCTION
In this paper we present an algorithm for determining quanti-

tatively if two bodies moving in three dimensional space collide.
The methodology presented consists of two stages. In the first,
infinite length cylinders are used to model the objects, then line
geometry is used to determine if the cylinders intersect. If these

∗Address all correspondence to this author.

infinite cylinders do not intersect then the two bodies do not col-
lide and no further testing is required. If the two infinite cylinders
do intersect then further testing is necessary. We proceed to the
second stage where cylinders of finite length are used to model
the objects and they are tested to determine quantitatively if they
collide.

Collision detection is vital for real world implementation of
three dimensional mechanical systems such as robots, mecha-
nisms, parallel kinematic machines, and linkages. Collision de-
tection assists in motion planning, digital prototyping and motion
simulation of the system. For motion planning applications col-
lision detection can be used to verify that the planned motion of
the system is collision-free with respect to the working environ-
ment and self-collisions. The methodology presented here en-
ables the user to model the system and determinewithout risking
hardwareif there is a possible collision. Three dimensional me-
chanical systems can be difficult and expensive to develop hence
such modelling and testing of the system in the early stages of
design may save time and reduce costs. Often, complex systems
are digitally prototyped and simulated. These simulations are
improved by including motion planning and collision detection.

The methodology presented here is general and can be used
to detect collisions between any rigid bodies moving in three di-
mensions provided that the bodies are predominantly cylindri-
cal in shape. We focus upon such bodies because this shape
is commonly found in industrial robots, parallel kinematic ma-
chines (e.g. Stewart-Gough platforms), and spatial mechanisms.
Our primary motivation for this work comes from our efforts to
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advance the state of the art in spatial mechanism design. Spa-
tial mechanisms are closed kinematic chains consisting of rigid
links connected by cylindric(C), revolute(R), or prismatic(P)
joints. Traditionally, the links of these mechanisms are cylin-
drical in shape. Recently, there have been some significant ef-
forts made to address the challenge of designing useful spatial
mechanisms. In [Larochelle, 1998] a Burmester Theory based
computer-aided design program for spatial 4C mechanisms was
reported. Efforts were made to address circuit and branch defects
in [Larochelle, 2000]. Approximate motion synthesis was ad-
dressed in [Larochelle, 1994] and [Dees, 2001]. The exploration
of utilizing virtual reality techniques to address the inherent vi-
sualization and interaction challenges was reported in [Kihonge
et al, 2002].

The goal here was to facilitate the design of spatial 4C mech-
anisms by assisting in the selection of a mechanism that is free
of collisions, including self-collisions. For collision detection,
cylinders are used to model all objects that need to be analyzed.
Cylinders are useful modelling tools since most three dimen-
sional mechanical systems consist of some combination of pris-
matic, revolute, and cylindric joints. With respect to the specific
case of spatial 4C mechanisms, traditionally the links are cylin-
drical in shape. For the first stage of testing, infinite cylinders
are used to model the links. This allows us to employ line ge-
ometry to yield a fast and efficient means of determining if a
collision is possible. If the infinite cylinders do intersect then the
actual finite links may in fact collide. Therefore, we proceed to
the second stage of the collision detection algorithm where finite
cylinders are used to model the links. Then these cylinders are
tested for possible collisions.

The paper proceeds as follows. First, the distance calcula-
tions between infinite cylinders then finite length cylinders are
presented. The necessary kinematic analysis of the spatial 4C
mechanism are performed. Next, utilizing the distance calcula-
tions and the results of the spatial 4C analysis, we determine if
a collision occurs for a spatial 4C mechanism. Finally, a case
study for the self collision detection of a spatial 4C mechanism
is presented.

1.1 Related Works
Zsombor-Murray [Zsombor-Murray, 1992] presents the vi-

sualization of the shortest distance between two lines in space.
His constructive geometry and algebraic solutions to the problem
motivated the work reported here. [Xavier, 2000] correctly states
that failure to detect a collision is less acceptable than false posi-
tives, which can be further checked and that for the sake of speed
exact or accurate collision detection is often sacrificed. Colli-
sions are unacceptable and therefore being able to detect and
avoid them is of vital interest. A great amount of work has been
done on the collision detection problem. Many models and meth-
ods have been proposed to solve this important problem from

simple two dimensional models [Wu, Mayne, 2000] to highly
complex models such as [Johnson, Vance, 2001], [Patoglu, Gille-
spie, 2000] and [Xavier, 2000]. These general methods are com-
putationally intensive when compared to the algorithm presented
here.

Although spatial 4C mechanisms are capable of spatial mo-
tion, i.e. motion in three dimensions, their motion is constrained
to a complex three dimensional surface so traditional methods of
path planning (e.g. [Belta, Kumar, 2000]) do not apply. Simi-
larly, singular configurations can be easily identified during the
testing phase and can be avoided during implementation [Mi,
Yang, Abdel-Malek, Jay, 2002]. Path verification [Stocco, 2001]
and reachable space methods [Fuhrmann, Schomer, 2001] do not
apply for the self collision problem since the envelope of the
mechanism does not take into account self collisions. There are
several methods available to calculate the data necessary for the
two step analysis that is proposed in this paper. The relatively
low number of points and vectors necessary used do not warrant
using vector bundles [Serre, Riviere, Duong, Ortuzar, 2001]. In
future work, the use of dual vectors per [Fischer, 1994] for gen-
erating the necessary geometric data may be implemented.

2 Distance Calculation

2.1 Infinite Cylinder Testing

Here we use infinite and finite cylinders to model rigid bod-
ies in three dimensions. Initially, each object is modelled by a
cylinder of infinite length and finite radius. Infinite cylinders are
simple models to check for collisions since they can be repre-
sented by a line with a radius. The shortest distance between
two lines in space is along a line that intersects both lines and
is also mutually orthogonal (common normal). An advantage of
using cylinders is that their common normal line has a finite line
segment between the two cylinders and by subtracting the two
cylinders radii from the segment, possible collisions can be de-
tected. If the distance between the two cylinders is less than the
sum of their two radii then the infinite cylinders have collided.
Hence, if the actual finite cylindrical objects have collided it is
necessarythat the minimum distance between their associated
infinite cylinders is less than the sum of their radii.

The major axis of an infinite cylinder is a line. Here, we use
Plücker coordinates and dual vectors to represent these lines in
space. Pl̈ucker coordinates define a line by its unit directional
vector and moment. Moreover, when convenient, we employ
dual vector algebra to operate on lines. The Plücker coordinates
of a line can be generated from two points on the line or from
a point and direction vector (see Fig. 1). For example lineS1

can be defined by points~c and~f or point~c direction vector~s.
Likewise, lineS2 can be defined by points~d and~g or point~d and
direction vector~w (see eq. 1 and 2).
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Figure 1. Infinite Cylinder Testing

S1 =
( ~f −~c

‖~f −~c‖
,~c×

~f −~c

‖~f −~c‖

)
(1)

= (~s,~c×~s)

S2 =
( ~g− ~d

‖~g− ~d‖
, ~d× ~g− ~d

‖~g− ~d‖

)
(2)

= (~w, ~d×~w)

We use the dual vector representation of the lines and dual vector
algebra as follows [Fischer, 1999] and [McCarthy, 2000] where
ε2=0.

Ŝ1 = (~s,~c×~s) (3)

= (a,a0)
= a+ εa0

Ŝ2 = (~w, ~d×~w) (4)

= (b,b0)

= b+ ε~b0

Line dot product:

Ŝ1 · Ŝ2 = (a,a0) · (b,b0) (5)

= (a·b,a·b0 +b·a0)
= a·b+ ε(a·b0 +b·a0)
= cosθ− εdsinθ
= cosθ̂

Line cross product:

Ŝ1× Ŝ2 = (a,a0)× (b,b0) (6)

= (a×b,a×b0 +a0×b)
= a×b+ ε(a×b0 +a0×b)
= (sinθ+ εdcosθ)N̂
= sinθ̂N̂

whereN̂ is the common normal line tôS1 andŜ2.
The above operations are important for calculating the dis-

tanced and the angleθ between two lines. The resultant dual
number of the dot product of two dual vectors yields the angle
and distance between the two lines as long as they are not par-
allel to each other (see eq. 5). If thedsinθ term is not equal to
zero, then the lines do not intersect (d 6= 0) and are not parallel
(sinθ 6= 0). If dsinθ is equal to zero and cosθ term does not
equal one, then the lines intersect (d=0) and are not parallel.

If the cosθ term of the dot product is equal to 1 the vec-
tors are parallel and another method of determining the distance
between the two lines is necessary. If the lines are parallel, the
resultant dual vector of the cross product of the lines yields the
vector between the two lines (see eq. 6). If thedcos(θ) term is
zero then the lines are identical and the distance between them is
zero.

This is a fast method of determining the distance between
the two lines and if a possible collision has occurred. By sub-
tracting the radii of the two cylinders from the distance it can
be determined if further testing of the cylinders is necessary. If
the resulting distance is greater than the two radii then no col-
lision is possible regardless of the length of the finite cylinders
and the next cylinder pair can be tested. If the result is not greater
than the two radii then a collisionmay haveoccurred and a finite
cylinder model is used in the next stage of the collision detection
algorithm.

2.2 Finite Cylinder Testing
If a possible collision has been detected by the infinite cylin-

der test then further testing is required to determine if an actual
collision has occurred. The model is modified from cylinders of
infinite length to finite length. This changes the base approach
from testing lines to testing line segments. The same idea ap-
plies that the shortest distance between the lines is their common
normal but the point where the common normal intersects the
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Figure 2. Parallel Testing

cylinders becomes important. Each intersection point lies either
on the segment or off an end of the segment. If the point is off the
segment then the nearest endpoint of the segment is used for test-
ing since it is closest to the other segment. This is done for both
segments and the distance between the two points is calculated
and then compared to the two radii to determine if a collision has
occurred.

From the initial testing it has already been determined if the
lines are parallel. If they are parallel then there are two general
cases possible: the segments overlap in some manner or there is
no overlap. The equation for a plane can be determined that is
perpendicular to the lines and passes through one endpoint uti-
lizing planar geometry. The other line can then be tested to see
at what point along its length it intersects the plane. This point
needs to be tested to see if it is on the line segment or not. This is
repeated for up to two other endpoints (a fourth endpoint being
redundant) to test for overlapping (see Fig. 2). If no overlapping
occurs of the parallel segments then the shortest distance will be
between one of the four combinations of the two segments end-
points.

If the lines are not parallel then a hybrid Plücker based
method is used. The line segments are described by an endpoint
of the line segment and anon-unit direction vector (see Fig. 3).
The common normal lineN intersects the linesS1 andS2 at points
~p and~q respectively. Parametric equations for points~p and~q of
linesS1 andS2 can be calculated (see eq. 7).

~p = ~c+ t1~s (7)

~q = ~d+ t2~w

Figure 3. Finite Cyliner Testing

t1 =
[(~d−~c)×~w] ·~n

~n·~n

t2 =
[(~d−~c)×~s] ·~n

~n·~n
~n = ~s×~w

The points~p and~q are on the linesS1 and S2. We must
determine wether they are on the segments, before the segments
or after the segments. The reason for not using unit directional
vectors is now apparent. Ift1 ≤ 0 then~p lies at the start of the
segment or earlier, so the start point is used to determine the dis-
tance. Ift1 ≥ 1 then~p lies at the end of the segment or later, so
the end point is used. If 0< t1 < 1 then~p lies on the line segment
so~p can be used to calculate the distance. The above holds true
for S2, t2 and~q. This determines the two points to be used for the
distance calculation presented above.

3 THE SPATIAL 4C MECHANISM
A spatial 4C mechanism has four cylindrical joints, each

joint permitting relative rotation and translation along a line (see
Fig. 4). The frame’s axes are color coded red, green, and blue
to correspond with the local XYZ axes. The link parameters that
define the mechanism are listed in Tbl. 1 and the joint variables
are defined in Tbl. 2.

The spatial 4C mechanism may be viewed as a combination
of two CC dyads. The driving CC dyad has four independent
joint variables, referred to asθ, d1, φ andc1. The driven dyad
also has four independent joint variables,ψ, d2, δ andc2. When
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Figure 4. 4C Spatial Mechanism

Table 1. Common Normal & Link Parameters of the 4C Mechanism

Link Dual Angle Twist Length

Driving α̂ α a

Coupler η̂ η h

Driven β̂ β b

Fixed γ̂ γ g

adjoined by the coupler link, the two dyads form a closed chain
spatial 4C mechanism with two degrees of freedom. We chose
θ andd1 to be the independent joint variables. Note thatφ and
c1 as well as the driven dyad’s joint variables are now explicit
functions ofθ andd1 and these functions are found below.

3.1 Spatial 4C Mechanism Analysis
We now present the equations that define the relative move-

ment for the links of a spatial 4C mechanism given its physical
dimensions and the input variables,θ andd1. The closed chain
vector loop equations were solved to yield the following equa-
tions, [Larochelle, 1998] and [Duffy, 1980].

The coupler angleφ is a function of the input angleθ (see
eq. 8).

Table 2. Moving Axes & Joint Variables of the 4C Mechanism

Joint Axis Dual Angle Rotation Translation

Fixed θ̂ θ d1

Driving φ̂ φ c1

Coupler δ̂ δ c2

Driven ψ̂ ψ d2

φ(θ) = arctan

(
B
A

)
±arccos

(
C√

A2 +B2

)
(8)

A = sin(η)sin(γ)cos(α)cos(θ)−
sin(α)sin(η)cos(γ)

B = −sin(η)sin(γ)sin(θ)
C = cos(β)−cos(η)sin(α)sin(γ)cos(θ)−

cos(α)cos(η)cos(γ)

Note thatφ has two solutions corresponding to the two assem-
blies or circuits of the mechanism.

The output angleψ is a function of the input angleθ and the
coupler angleφ (see eq. 9).

ψ(θ,φ) = arctan

(
B
A

)
(9)

A =
1

−sin(β)

{
cos(η)(cos(α)sin(γ)−

cos(γ)cos(θ)sin(α))−
sin(η)cos(φ)(cos(α)cos(γ)cos(θ)+
sin(α)sin(γ))+

sin(η)cos(γ)sin(φ)sin(θ)
}

B =
1

sin(β)

{
cos(η)sin(α)sin(θ)+

sin(η)cos(θ)sin(φ)+

sin(η)cos(α)cos(φ)sin(θ)
}

The output coupler angleδ, i.e. the angle between the cou-
pler and driven crank is a function of the input angleθ and the
output angleψ (see eq. 10).

δ(θ,ψ) = arctan

(
B
A

)
(10)

A =
1

sin(η)

{
cos(α)

(
cos(γ)sin(β)+
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cos(β)sin(γ)cos(ψ)
)
−

sin(α)cos(θ)
(

cos(β)cos(γ)cos(ψ)−
sin(β)sin(γ)

)
−

sin(α)cos(β)sin(θ)sin(ψ)
}

B =
1

−sin(η)

{
cos(α)sin(γ)sin(ψ)+

sin(α)sin(θ)cos(ψ)−

sin(α)cos(γ)cos(θ)sin(ψ)
}

The driving coupler translationc1, the translation along the
driving axis, is a function ofθ, ψ, δ and the input translationd1

(see eq. 11).

c1(θ,ψ,δ,d1) =
A
B

(11)

A = d1sin(γ)sin(ψ)+acos(θ)cos(ψ)
+acos(γ)sin(θ)sin(ψ)+hcos(δ)
−b−gcos(ψ)

B = sin(η)sin(δ)

The driven coupler translationc2, the translation along the
driven axis, is a function ofθ, φ, ψ and the driving coupler trans-
lationc1 (see eq. 12).

c2(θ,φ,ψ,c1) =
A
B

(12)

A = hcos(φ)cos(θ)+c1sin(α)sin(θ)+acos(θ)
−hcos(α)sin(φ)sin(θ)−g−bcos(ψ)

B = sin(β)sin(ψ)

Finally, the translation along the driven axisd2 is a func-
tion of θ, φ, ψ, the driving coupler translationc1 and the driven
coupler translationc2 (see eq. 13).

d2(θ,φ,ψ,c1,c2) =
A
B

(13)

A = hcos(φ)sin(θ)−c1cos(θ)sin(α)
+asin(θ)+hcos(α)cos(θ)sin(φ)
−bcos(γ)sin(ψ)+c2cos(β)sin(γ)
+c2cos(γ)cos(ψ)sin(β)

B = −sin(γ)

4 Mechanism Collision Testing
4.1 Part 1: Analyzing Mechanism Via Points

Our implementation of the collision detection algorithm pre-
sented here requires a set of via points, the constant parameters

(α, β, γ, η, a, b, g, h) and the radii of each of the links of a spatial
4C mechanism. The set of via points contains the input values
for θ, d1, number of incremental steps to the next via point, and
which solution to use forφ. From this given information several
tests can be performed to see if the mechanism is unsatisfactory.

Each via point’s theta value can be tested to make sure that
it is within the allowable motion range of the mechanism. The
allowable motion range can be calculated using the link twist
angles of the mechanism (see eq. 14) [Murray and Larochelle,
1998].

C1 =
cos(η−β)−cos(α)cos(γ)

sin(α)sin(γ)
(14)

C2 =
cos(η+β)−cos(α)cos(γ)

sin(α)sin(γ)
−1 < C1,C2 < 1

This gives four possible cases of solutions sets: see Fig. 5.

Case 1. NeitherC1 norC2 are within the allowable range so
the input link is capable of full rotation.
Case 2. Onlyθ1 = arccos(C1) exists, then the input link
rocks acrossπ from±θ1.
Case 3. Onlyθ2 = arccos(C2) exists, then the input link
rocks across 0 from±θ2.
Case 4. Bothθ1 = arccos(C1) and θ2 = arccos(C2) are
within the allowable range. The input link can rock in two
ranges, betweenθ1 and θ2 and−θ1 and−θ2 not passing
through 0 orπ.

Using the above equations the allowable ranges forθ can
be determined. If any of the via point’sθ values are not in the
allowable range, the mechanism is not satisfactory.

In addition, each via point’sd1 can be checked for a sign
change or if it approaches zero. Currently, the spatial 4C mech-
anisms designed by SPADES and VRSpatial use the common
normal to connect each link’s collar to its axis. If the sign of
d1 changes or if it nears zero a collision will occur between the
driving link’s collar and the fixed link’s common normal.

Similarly, theφ solution set can be inspected. Theφ solu-
tion set is passed in as part of the via points.φ has two solu-
tion sets and the remaining calculations are based on only one of
the sets for the mechanism to be acceptable. If the set changes,
the mechanism changes circuits and/or moves through a singular
configuration.

4.2 Part 2: Determining Maximum Length of each
link’s moving axis

The links of a spatial 4C mechanism can be modelled by a
closed chain of eight line segments defined by twelve points (see
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Figure 5. Input Theta Range

Fig. 6). Each of the four links are described by three points:
one at the center of the link’scollar, theelbowat the intersection
of the link’s common normal with its axis, and theend at the
opposite end of its axis. Although each link’s collar is co-linear
with the previous link’s axis, separate points are required for it
and for the end of the moving axis.

We assume that each link axis is rigid and that its length will
be sized accordingly. Hence, it is necessary to find the maxi-
mum length of each link’s axis for the desired motion. To do
this we use linear interpolation of theθ andd1 via points to yield
a discretized representation of the desired motion. At each dis-
crete point we perform a kinematic analysis of the mechanism
via Section 3. Finally, the minimum and maximum values ofc1,
d2, andc2 are identified. These lengths are used to define the
lengths of the finite cylinders that are used to model the link axes
for collision detection.

4.3 Part 3: Infinite Line (Cylinder) Generation
The first step in testing the mechanism for a possible colli-

sion is generating the Plücker coordinates of its axes. We assign
right-handed frames to the mechanism that translate and rotate
along and about only the local X and Z axes, see Fig. 4). The
frames are attached at the intersection of the link segments and
are aligned such that either its X or Z axis is collinear with the
link’s direction vector. This kinematic analysis uses standard ho-
mogeneous transformations that are translations or rotations with
respect to a single local axis (X or Z). Each homogeneous trans-
formation contains the point on the line (~p) and its direction vec-

Figure 6. Point Designation

Table 3. Kinematic Analysis of Points

Frame Axis Rotation Translation

1
2T z θ d1

2
3T x α a

3
4T z φ c1

1
8T x γ g

8
7T z ψ d2

7
6T x β b

6
5T z δ c2

tor (either~X or~Z).

i−1
i T =

~x ~y~z ~p

0 0 0 1

 (15)

The closed chain mechanism is modelled as two open kine-
matic chains fixed at frame 1 that are linked by the coupler’s
common normal segmenth. Note that the distance between1

4~p
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and1
5~p is h) (see eq. 16). The Plücker coordinates of the moving

axes are obtained from the matrices1
4T and1

5T:

1
4T = 1

2T2
3 T3

4 T (16)

= Z(θ,d1)X(α,a)Z(φ,c1)
1
5T = 1

8T8
7 T7

6 T6
5 T

= X(γ,g)Z(ψ,d2)X(β,b)Z(δ,c2)

where,

[X(θ,x)] =


1 0 0 x
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1



[Z(θ,z)] =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 z
0 0 0 1


4.4 Part 4: Finite Line (Cylinder) Generation

The next step in testing the mechanism is determining the
location of all of the mechanism’s points. For each linear inter-
polation ofθ andd1 of the mechanism, the points can be gener-
ated by using the above kinematic analyses. The end of each link
has to be generated differently for each chain (see Fig. 7). For
the driving chain we substituted1max for d1 andc1max for c1 to
obtain the three dimensional coordinates of the end point (see eq.
17). However, the driven chain measures the translations in the
opposite direction- from collar to elbow instead of elbow to col-
lar. This results in the end point being in the opposite direction
of the elbow relative to the collar (except when the translation
is at its maximum/minimum). This makes the translation of the
point, for example,c2 - c2max (see eq. 18).

DrivingEnd=1
4maxT = Z(θ,d1)X(α,a)Z(φ,c1max) (17)

CouplerEnd=1
5maxT = X(γ,g)Z(ψ,d2)X(β,b)Z(δ,c2−c2max)

(18)
For each incremental step the twelve points can be calcu-

lated and the eight line segments generated. The segments are
numbered starting with the fixed link’s axis, proceeding around
the closed chain, and ending with the fixed link’s common nor-
mal (see Tbl. 4). This yields the set of line segments for the
incremental step that can then be tested to see if a collision has
occurred.

Figure 7. Link Length definitions

Table 4. Segment Designations of the Spatial 4C Mechanism

Segment No. Start Point End Point

1 Fixed Elbow Fixed End

2 Driving Collar Driving Elbow

3 Driving Elbow Driving End

4 Coupler Collar Coupler Elbow

5 Coupler Elbow Coupler End

6 Driven Collar Driven Elbow

7 Driven Elbow Driven End

8 Fixed Collar Fixed Elbow

5 Cylinder Testing Logic
It is necessary that for each incremental step that all of the

cylinders are tested for collisions. Since speed is important for
the calculations, we look to reduce the number of tests that must
be run for each incremental step. First, cylinders can not collide
with themselves since the links are rigid. Also, testing cylinder 1
for a collision with cylinder 5 is redundant to checking cylinder 5
to cylinder 1. This greatly reduces the number of tests required.
The number can be further reduced by observing the design of
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Table 5. Case Study - Link Parameters

Twist (degrees) Length (unit)

α = 70 a = 10

β = 120 b = 8

γ = 110 g = 19

η = 55 h = 15

Figure 8. Case Study: 4C Mechanism

the mechanism. In a spatial 4C mechanism it is not possible for a
cylinder to collide with the cylinders that are adjacent to it. This
reduces the number of possible cylinder combinations in a spatial
4C mechanism to twenty.

6 Case Study
To demonstrate the methodology presented in this paper we

used the spatial 4C mechanism described in Table 5. The mech-
anisms fixed link is grey, driving link green, driven link red and
coupler link blue (see Fig. 8). Each link’s common normal was
assigned a radii of one unit and each axis a radii of two. The axis
was modelled as having a larger radii to account for the collar
that has to translate and rotate about the links’ axis.

A set of via points (see Tbl. 6) was then entered for the
mechanism and some initial testing was performed. From the
link twist values the allowable range of/theta was calculated

Table 6. Case Study - Motion Input

θ (degrees) d1 (unit) Increments ±φ

78 100 50 +

105 140 40 +

130 110 60 +

100 80 30 +

95 100 50 +

Table 7. Case Study - Translation Output

Translation Min (unit) Max (unit)

d1 80.000 140.000

c1 -19.029 -108.032

d2 -104.658 -174.518

c2 -91.520 -138.356

Table 8. Case Study - Results

Distance (unit) Seg. No. Seg. No.θ (degree) d1 (unit)

4.00 5 7 122.00 102.00

(see eq. 14) and bothC1 andC2 exist (case 4). This made the
allowableθ ranges 52.33↔ 174.68 and−52.33↔−174.68 (see
eq. 19).

C1 = 0.61107=⇒ θ1 = 52.33 (19)

C2 = −0.99569=⇒ θ2 = 174.68

After calculating the allowableθ range each of the via points
was tested to make sure that they were within the same allowable
range.

The next step in testing the mechanism is to determine the
global translational minimums and maximums (see Tbl.7). In-
spection of the mechanism’s translations shows that there were
no sign changes in the individual translations and that none of
them approach zero. After this preliminary testing and data ac-
quisition, collision detection was performed. The result is that
there was no collision detected. The closest that the mechanism
came to a collision occurred when segments five and seven where
only only 4 units apart atθ = 122 andd1 = 102 (see Tbl. 8). Fig-
ure 9 shows the mechanism when it is in its minimum distance
configuration.
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Figure 9. Case Study: Minimum Distance Configuration

7 Future Work
Currently, we are exploring methods to analytically deter-

mine the minimum and maximum translations along the joint
axes of a spatial 4C mechanism. Additional are working toward
implementing this work into our current spatial mechanism de-
sign programs; VRSpatial [Kihonge et al, 2002] and SPADES
[Larochelle, 1998].

8 CONCLUSIONS
In this paper we have presented a novel methodology for de-

tecting collisions of cylindrically shaped rigid bodies moving in
three dimensions. This algorithm uses line geometry and dual
number algebra to exploit the geometry of cylindrical objects to
facilitate the detection of collisions. First, the rigid bodies are
modelled with infinite cylinders and an efficient necessary con-
dition for collision is evaluated. If the necessary condition is
not satisfied then the two bodies do not collide. If the necessary
condition is satisfied then a collision between the bodies may oc-
cur and we proceed to the next stage of the algorithm. In the
second stage the bodies are modelled with finite cylinders and a
definitive necessary and sufficient collision detection algorithm
is employed. The result is a straight-forward and efficient means
of detecting collisions of cylindrically shaped bodies moving in
three dimensions. This methodology has applications in spatial

mechanism design, robot motion planning, and workspace anal-
yses of parallel kinematic machines such as Stewart-Gough plat-
forms. A case study examining a spatial 4C mechanism for self
collisions was included.
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